UDC 612.172.2.08:615.22.03

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА АНТИАРИТМИЧЕСКОГО ВЛИЯНИЯ АНИЛОКАИНА И ЛИДОКАИНА ПРИ НЕЙРОГЕННОЙ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ

COMPARISON OF ANTI-ARRHYTHMIC EFFECT OF ANILOCAIN AND LEDOCAIN IN NEUROGENOUS ATRIAL FIBRILLATION.

Шейх-Заде Юрий Решадович - д. м. н., профессор Кубанский государственный медицинский университет, Краснодар, Россия Sheikh-Zade Yurii Reshadovich, MD, Ph.D.(Med) Kuban State Medical University, Krasnodar, Russia

Богус Саида Казбековна - к. м. н. МУЗ Городская больница № 2 (КМЛДО), Кубанский государственный медицинский университет, Краснодар, Россия

университет, Краснодар, Россия

Bogus Saida Kazbekovna, MD, Dr.Sc.(Med) City Hospital # 2 (KMMDA), Kuban State Medical University, Krasnodar, Russia

Галенко-Ярошевский Павел Александрович - д. м. н., профессор Кубанский государственный медицинский Galenko-Yroshevsky Pavel Aleksandrovich, MD, Ph.D.(Med) Kuban State Medical University, Krasnodar, Russia

В условиях нейрогенной фибрилляции предсердий у кошек обнаружено антиаритмическое действие анилокаина, в большей степени обусловленное его ваголитическим, а не кардиотропным влиянием. Анилокаин имеет существенное преимущество по сравнению с лидокаином в выраженности и продолжительности антиаритмического эффекта

Neurogenous atrial fibrillation. In cats has revealed the anti-arrhythmic effect of anilocain. It was more vagolytic than cardiotropic one. Anilocain has evident advantage combined with lidocain in duration and extent of anti-arrhythmic effect.

Ключевые слова: АНИЛОКАИН, ЛИДОКАИН, НЕЙРОГЕННАЯ ФИБРИЛЛЯЦИЯ ПРЕДСЕРДИЙ, АНТИАРИТМИЧЕСКИЙ ЭФФЕКТ.

Keywords: ANILOCAIN, LIDOCAIN, NEUROGENOUS ATRIAL FIBRILLATION, ANTIARRHYTHMIC EFFECT.

(2-броманилид-3-диэтиламинопропановой Анилокаин кислоты гидрохлорид) амидной является местным анестетиком группы, синтезированным Пермской государственной фармацевтической В академии и рекомендованным Фармакологическим комитетом МЗ РФ к применению в медицинской практике [1]. По сравнению с лидокаином анилокаин обладает не только в 1,5 раза меньшей острой токсичностью, но и более выраженной местно-анестезирующей активностью [2].

Хорошо известно, что местно-анестезирующие средства способны оказывать на сердце антиаритмический эффект, в основе которого лежит не только угнетение быстрого натриевого тока в кардиомиоцитах [3, 4], но и выключение рефлекторных механизмов аритмогенного влияния вегетативной нервной системы [5]. Согласно этому подходу глубокое и

продолжительное анестезирующее действие позволяет предполагать наличие высокой антиаритмической активности анилокаина.

С учетом вышеизложенного целью настоящей работы явилось исследование антиаритмического влияния анилокаина на нейрогенную фибрилляцию предсердий (НФП), а также сопоставление его эффективности с лидокаином.

Методика исследования. Исследование проводилось на 25 искусственно вентилируемых кошках обоего пола массой 3,0 - 4,0 кг, находившихся под хлоралозо-нембуталовым наркозом (75+15 мг/кг внутрибрющинно) в условиях автоматического поддержания температуры тела на уровне 37° С. Через яремную и бедренную вены животным вводили в правое предсердие 2 биполярных платиновых зонда, один из которых служил для раздражения миокарда, а другой - для регистрации внутрипредсердной ЭКГ.

Для получения НФП [6, 7] на эндокард правого предсердия наносили 2 электрических импульса (5 мс, 4 порога) с интервалом 40 мс на фоне ритмичной стимуляции шейного отдела правого блуждающего нерва (БН) (2 мс, 40 Гц, 6 порогов), осуществляемой от универсального стимулятора ЭСУ-2 (Россия). Запись внутрипредсердной ЭКГ производили с помощью кардиоинтервалометра на самописце Н338-2 (Россия), а визуальный контроль событий - с помощью 8-канального индикатора ИМ-789 (Литва).

Анилокаин вводили внутривенно в дозе 5,0 (n=10) и 3,5 (n=5) мг/кг, лидокаин - в дозе 3,5 мг/кг (n=10). В начале эксперимента, а также через 5, 30, 60 и 120 минут после введения вещества определяли интервалы Р-Р и Р-Q ЭКГ, порог возбуждения и эффективный рефрактерный период предсердий, время синоатриального проведения возбуждения [8], порог возбуждения БН и компоненты его хронотропного эффекта (XЭ) [9], длительность НФП. Синхронизирующий компонент хронотропного влияния БН оценивали по скачкообразному удлинению текущего

интервала Р-Р при нанесении на нерв 3 электрических импульсов (2 мс, 6 порогов, 40 Гц) синхронно с зубцом Р ЭКГ. Выраженность тонического компонента ХЭ БН определяли по максимальному приросту предсердного цикла после исчезновения синхронизирующего компонента.

Полученные результаты обрабатывали статистически с определением средней арифметической (М), стандартной ошибки (±m) и показателя достоверности различий (р) [11].

Результаты исследования и их обсуждение. Исходные параметры деятельности сердца, а также динамика ваго- и кардиотропного действия анилокаина представлены в таблице 1.

Таблица 1 – Влияние анилокаина (5,0 мг/кг) на физиологические свойства предсердий, хронотропный эффект блуждающего нерва и длительность нейрогенной фибрилляции предсердий у кошек (n=10, M±m)

T T T T T	Исходные	Динамика показателей во времени						
Изучаемые показатели	значения	(мин) после введения вещества						
_	(100%)	5	30	60	120			
Интервал Р-Р ЭКГ, мс	350±5	433±13	367±12	357±7	351±5			
		(123)*	(105)	(102)	(100)			
Порог раздражения миокарда,	430±30	620 ± 50	510±38	460±20	460±30			
мВ		(144)*	(119)*	(107)	(107)			
Эффективный рефрактерный	133±5	156+5	146±7	139±5	134±5			
период миокарда, мс	133±3	(117)*	(110)*	(105)*	(101)			
Время синоатриального	23±1	30 ± 3	26±1	25±1	23±1			
проведения возбуждения, мс	23±1	(130)*	(108)*	(104)	(100)			
Интервал Р-Q ЭКГ, мс	75±2	82±2	77+2	78±3	75±2			
		(109)*	(103)*	(104)	(100)			
Порог раздражения БН, мВ	380±40	540 ± 46	430±60	370±39	380±40			
		(142)*	(113)*	(97)	(100)			
Синхронизирующий	244±22	37±15	108±14	213±17	241±21			
компонент ХЭ БН, мс		(15)*	(44)*	(87)*	(99)			
Тонический компонент ХЭ	84±7	11±4	37±4	70±4	79±7			
БН, мс		(13)*	(44)*	(83)*	(94)			
Длительность НФП, с	164±16	8±6	68±7	141±11	162+16			
		(5)*	(41)*	(86)*	(99)			

Примечания: в скобках - значения в процентах относительно исходного уровня; * - p<0,05 по сравнению с исходными данными.

Сразу после поступления анестетика в кровь отмечено резкое снижение продолжительности НФП при одновременном подавлении параметров автоматии, возбудимости и проводимости миокарда. Через 5 минут после введения в 5 экспериментах продолжительность НФП достигала даже нулевого уровня. Через 1 час почти все показатели кардиотропного влияния восстанавливались, за исключением эффективного незначительного рефрактерного удлинения миокарда предсердий, тогда как выраженность НФП продолжала оставаться сниженной по сравнению с исходным уровнем. На всех этапах эксперимента антиаритмический эффект анилокаина был четко сопряжен с нейротропным влиянием, проявлявшимся угнетением обоих компонентов ХЭ БН, особенно резко выраженным через 5 минут после инфузии вещества (рисунок 1).

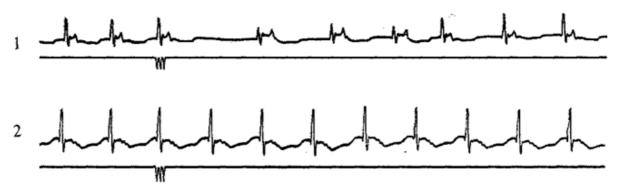


Рисунок 1- Ваголитическое действие анилокаина. На каждом фрагменте сверху вниз показаны внутрипредсердная ЭКГ, отметка раздражения БН (2 мс, 40 Гц, 6 порогов, 3 импульса в залпе), 1 - исходный ХЭ БН, 2 - ХЭ БН через 5 минут после введения анилокаина в дозе 5,0 мг/кг. Калибровка: 1 мВ; 0,5 с.

Анализируя полученные результаты, следует отметить высокую противофибрилляторную эффективность анилокаина, ключевую роль в которой играет холиноблокирующее влияние анестетика на нервный аппарат сердца. Обращает внимание отчетливая корреляция динамики антиаритмического эффекта с ваголитическим действием анилокаина, поскольку постепенное восстановление резко сниженных компонентов

вагусного XЭ сопровождалось неизменным увеличением длительности НФП.

В следующих сериях экспериментов проводилась сравнительная оценка антиаритмического влияния анилокаина и лидокаина в дозе 3,5 мг/кг. Исходные параметры физиологических свойств миокарда, хронотропного влияния БН и продолжительности аритмии недостоверно отличались в обеих группах, поэтому для большей наглядности показатели функционального состояния сердца и длительности НФП представлены в процентах по отношению к фоновому уровню в каждой серии опытов, принимаемому за 100% (табл. 2).

Таблица 2 - Влияние анилокаина (n=5) и лидокаина (n=10) в дозах 3,5 мг/кг на функциональное состояние сердца и длительность нейрогенной фибрилляции предсердий (M±m)

фиорилляции предсердии (МЕШ) Динамика показателей после введ							
Изучаемые показатели	Анестетик	анестетиков (мин)					
1137 110:1220 110:110:11		5	30	60	120		
Интервал Р-Р ЭКГ, %	Анилокаин	129±10*	111±4*	102±1	101±1		
	Лидокаин	112±5*	105±5*	102±4	102 ± 7		
Порог раздражения миокарда, %	Анилокаин	155±22*	105±13	102±12	110±15		
	Лидокаин	176±16*	115±15*	110±10	105±10		
Эффективный рефрактерный	Анилокаин	125±11*	103±4	101±4	100±5		
период миокарда, %	Лидокаин	116±7*	107±5*	106±6*	103±7		
Время синоатриального	Анилокаин	125±5*	110±5*	105±4	100±2		
проведения возбуждения, %	Лидокаин	117±4*	112±4*	113±9*	109±9		
Интервал Р-Q ЭКГ, %	Анилокаин	112±3*	107±1*	101±3	101±3		
	Лидокаин	111±4*	109±4*	102±3	101±3		
Порог раздражения БН, %	Анилокаин	152±12*	103±10	99±9	100±10		
	Лидокаин	117±3*x	110±3	114±3	107±7		
Синхронизирующий компонент	Анилокаин	15±2*	62+11*	85±11*	99±10		
ХЭ БН, %	Лидокаин	59±11*x	76±14	83±16	80±18		
Тонический компонент ХЭ БН,	Анилокаин	14±2*	76±17*	80±20*	101+18		
%	Лидокаин	61±9*x	82±14	83±17	90 ± 22		
Длительность НФП, %	Анилокаин	3±1*	65±16*	85±25*	97±7		
	Лидокаин	11±4*x	62±15	74±13	93±31		

Примечание: * - p<0,05 по сравнению с исходными данными (100%); x-p < 0,05 по сравнению с анилокаином.

Сравнительный анализ полученных результатов показал, что в условиях НФП анилокаин существенно превосходит антиаритмическую

активность лидокаина в течение 5 минут после введения веществ. На этом этапе исследования аналогичная динамика наблюдалась и в отношении холиноблокирующего влияния, сыгравшего ключевую роль в преимуществе антиаритмического эффекта анилокаина.

Сопоставляя временную динамику показателей функционального состояния сердца, следует признать более продолжительное кардиотропное влияние лидокаина. Антиаритмический эффект анилокаина по сравнению с лидокаином оказался более пролонгированным, сохраняясь противофибрилляторное течение часа. В TO время как В холиноблокирующее влияние лидокаина уже через полчаса после инфузии носило недостоверный характер.

Таким образом, полученные результаты не только подтверждают предположение о высокой антиаритмической активности анилокаина, но и хорошо согласуются с выдвинутой нами гипотезой [9], согласно которой реализация терапевтических свойств антиаритмиков осуществляется через блокирование нервного аппарата миокарда, дисфункция которого является первопричиной естественных тахиаритмий сердца.

Литература

- 1. *Панцуркин В. И. Анилокаин*. Состояние и перспективы внедрения // Фармобозрение. 2000. № 15-16. С. 35-36.
- 2. Панцуркин В. И., Алексеева И. В. Анилокаин, поиск, свойства. Начальный опыт применения лекарственных форм в медицинской практике. Пермь: ГОУ ВПО «ПГФА Росздрава», 2006. 174 с.
- 3. Метелица В. И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. М.: Медпрактика, 1996.-784 с.
- 4. Φ огорос P. H. Антиаритмические средства: Пер. с англ. -М. СПб: БИНОМ-Невский Диалект, 1999. 190 с.
- 5. Шейх-ЗадеЮ. Р., Галенко-ЯрошевскийП.А., ВислобоковА. И. и др. Влияние этацизина и этмозина на трансмембранные ионные токи в нейронах брюхоногого моллюска Lymnaea stagnalis // Бюл. экспер. биол. и мед. -2001. Приложение 2. -С. 106-108.
- 6. *Каверина Н. В., Бердяев С. Ю., Кищук Е. П., Пасхина О. Е.* Экспериментальное изучение новых антиаритмических средств // Ведомости фармакологического комитета. 1998. № 2. С. 11-18.
- 7. Шейх-Заде Ю. Р., Чередник И. Л. Методика получения ней-рогенной фибрилляции предсердий у теплокровных животных // Вестник аритмологии. 1998. № 8. С. 121.
- 8. Strauss H. G., Bigger J. T., Saroff A. L, Giardina E.-Y. V. Electrophysiologic evaluation of sinus node function in patients with sinus node dysfynction // Circulation. 1976. Vol. 53, N_2 5. -P. 763-776.
- 9. *Шейх-Заде Ю. Р., Чередник И. Л.* Компоненты отрицательного хронотропного влияния блуждающего нерва на сердце и способ их определения // Физиол. журн. им. И. М. Сеченова. 1996. -Т. 82. № 10.-С. 58-63.
- 10. *Гланс С.* Медико-биологическая статистика: Пер. с англ. -М.: Практика, 1998. 459 с.
- 11. *Шейх-Заде Ю. Р., Чередник И. Л., Галенко-Ярошевский П. А.* Значение нейротропного компонента в терапевтическом действии антиаритмических средств // Бюл. экспер. биол. и мед. -1999.-Т. 127. №3.-С. 353-356.