УДК 616.288.1	UDC 616.288.1
МИКРОФЛОРА ОТДЕЛЯЕМОГО НАРУЖНОГО СЛУХОВОГО ПРОХОДА У АМБУЛАТОРНЫХ ПАЦИЕНТОВ КРАЕВОЙ КЛИНИЧЕСКОЙ БОЛЬНИЦЫ № 2 (КРАСНОДАР)	MICROFLORA OF THE DETACHABLE EXTERNAL AUDITORY CANAL IN OUTPATIENT PATIENTS REGIONAL CLINIC HOSPITAL No. 2 (KRASNODAR)
Омельченко Анна Сергеевна	Omelchenko Anna Sergeevna
ГБУЗ «Краевая клиническая больница № 2», Краснодар	SBIHC «Region clinic hospital Nr 2», Krasnodar
Варибрус Екатерина Владимировна $\Gamma SV3$ «Краевая клиническая больница № 2», K раснодар	Varibrus Ekaterina Vladimirovna SBIHC «Region clinic hospital Nr 2», Krasnodar
Кричевцова Яна Евгеньевна ГБУЗ «Краевая клиническая больница № 2», Краснодар	Krichevtsova Yana Evgenievna SBIHC «Region clinic hospital Nr 2», Krasnodar
В статье проанализирована видовая структура микрофлоры отделяемого наружного слухового прохода уха. Представлены данные о частоте и структуре микробных ассоциаций.	The article analyzes the species structure of the detachable external auditory canal microflora of the ear. Data on the frequency and structure of microbial associations are presented.
Ключевые слова: МИКСТОВАЯ МИКРОФЛОРА, МОНОКУЛЬТУРА, АНТИМИКРОБНЫЕ ПРЕПАРАТЫ	Key words: MIXED MICROFLORA, MONOCULTURE, ANTIMICROBIAL DRUGS

АКТУАЛЬНОСТЬ

Инфекции ЛОР-органов относятся к наиболее распространенным заболеваниям человека. Они имеют важное медицинское и социально-экономическое значение и характеризуются высокой частотой проявления, а также являются причиной госпитализации пациентов. Основные этиологические факторы развития отитов — бактерии и грибы.

ЦЕЛЬ ИССЛЕДОВАНИЯ

У амбулаторных пациентов, обследуемых в ГБУЗ «Краевая клиническая больница № 2» (Краснодар), исследование микробного пейзажа отделяемого среднего уха проводили в период с 01.01.2018 по 31.12.2022. Полученные результаты могут служить основанием для решения вопросов этиологической терапии инфекций уха.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

За указанный период было проведено 175 исследований отделяемого среднего уха.

Исследуемый материал: отделяемое среднего уха, мазок ушного отделяемого.

Используемые методы: культуральное исследование, микроскопия нативная.

Культивирование образцов. Количественный анализ исследуемого материала проводили с использованием следующего набора питательных сред: кровяной 5%-й агар, маннит-солевой агар, среда МакКонки, шоколадный агар, среда Сабуро. Посевы культивируют в течение 24 ч при температуре +37 °C, чашки для выделения грибов — в инкубаторе *Hettich HettCube* 400 R при температуре +22 °C от трех до пяти суток.

Идентификацию микроорганизмов проводили с использованием метода масс-спектрометрии на приборе MALDI-TOF. В качестве дополнительного метода исследования при идентификации грибов применяли нативную микроскопию выделенных микроорганизмов.

Исследование антибиотикочувствительности осуществляли дискодиффузионным методом на агаре Мюллера — Хинтона, с использованием автоматических приборов VITEC. Результаты оценивали в соответствии с рекомендациями EUCAST.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ретроспективное исследование включен материал отделяемого среднего уха от амбулаторных пациентов ГБУЗ «Краевая клиническая больница № 2» (ККБ № 2) Краснодара в возрасте от 0 до 81 года за период с 01.01.2018 по 31.12.2022 в количестве N=175. Выделение и идентификацию микроорганизмов проводили на базе микробиологической лаборатории ККБ № 2. Клинический материал собирали и доставляли в лабораторию согласно методическим рекомендациям.

При проведении культурального исследования рост был выявлен в 79,4 % образцах (n=139), без роста 20,6 % (n=36). В монокультуре доля высеваемости достигала 53,2 %, в составе смешанной флоры – 46,8 % (таблица 1).

Наиболее часто встречающимися ассоциациями микроорганизмов оказались бактериальные (77 %), на долю смешанной флоры, представленной грибами и бактериями, приходилось 21,5 %. Комбинация плесневых и дрожжевых грибов встречалась единично (1,5 %).

Таблица 1 – Результаты исследований микрофлоры наружного слухового прохода у амбулаторных пациентов с 2018 по 2022 г.

Возбудитель	%
Монофлора бактерий	92,8
Монофлора грибы	7,2
Микстовая флора бактерий	77
Микстовая флора грибы + бактерии	21,5
Микстовая флора грибы + грибы	1,5

Полифлора в ассоциациях, по наблюдениям авторов, представлена в основном двух-, (64,6 %) и трехкомпонентным (24,6 %) сочетанием микроорганизмов. Частота встречаемости ассоциаций, в которых выделяли более трех компонентов флоры, значительно меньше и составляет 10,8 %.

В ходе анализа характера выделенной микрофлоры пришли к выводу, что по частоте встречаемости лидируют *Staphylococcus aureus* и *S. epidermidis* как в монокультуре, так и в ассоциациях. Частота выделения *S. aureus* в монокультуре составила 18,7 % и в ассоциациях – 15,8 %. Частота высеваемости для *S. epidermidis* – 22,7 % и 17,6 % соответственно.

Таксономическое разнообразие и частота встречаемости представителей семейства *Staphylococcaceae* показаны в таблице 2. Прослеживается уменьшение частоты обнаружения *S. capitis u S. auricularis* в монокультуре, по сравнению с микст-флорой.

Таблица 2 — Видовое разнообразие и частота встречаемости представителей семейства *Staphylococcaceae* в отделяемом наружного слухового прохода в монокультуре и в составе микстовой флоры

	Частота встречаемости			
Представитель	в монок	ультуре	в ассоциациях	
	n	%	n	%
Staphylococcus				
aureus	14	18,7	26	15,8
S. auricularis	3	4	9	5,5
S. capitis	4	5,3	14	8,5
S. caprae	0	0	1	0,6
S. cohnii	1	1,3	0	0
S. epidermidis	17	22,7	29	17,6
S. haemolyticus	6	8	9	5,5
S. pasteuri	0	0	1	0,6
S. pettenkoferi	1	1,3	0	0
S. warneri	0	0	6	3,6
S. xylosus	1	1,3	1	0,6

Второе месте по частоте выявления в исследуемом материале в монокультуре и ассоциациях занимает *Pseudomonas aeruginosa*. В монокультуре этот возбудитель высевается чаще (14,7 %), чем в ассоциациях (6,7 %). Другие представители группы неферментирующих грамотрицательных бактерий (НГОБ) выделяли только в составе полифлоры (таблица 3).

Таблица 3 — Видовое разнообразие и частота встречаемости представителей группы НГОБ в отделяемом наружного слухового прохода в монокультуре и в составе микстовой флоры

	Частота вст		речаемости	
Представитель	в монок	ультуре	в ассоциациях	
	n	%	n	%
Achromobacter xylosoxidans	0	0	2	1,2
Acinetobacter baumannii	0	0	2	1,2
A. lactucae	0	0	3	1,8
A. lwoffii	0	0	1	0,6
A. pittii	0	0	1	0,6
Pseudomonas aeruginosa	11	14,7	11	6,7
P. stutzeri	0	0	2	1,2

Среди представителей семейства *Enterobacteriaceae Klebsiella pneumoniae* обнаруживается в составе монокультуры и в ассоциациях. Другие энтеробактерии определяются только в ассоциациях, кроме *Proteus mirabilis*, который встречается в монокультуре (1,3 %) и в ассоциациях (1,8 %) (таблица 4).

Микроскопические грибы, присутствующие на здоровой коже наружного слухового прохода, могут играть заметную роль в развитии отомикозов при нарушении иммунологического статуса кожи. Согласно литературным данным, наиболее значимыми в развитии патологических состояний являются грибы рода *Aspergillus* (65 %). Дрожжеподобные грибы рода *Candida* составляют примерно 24 % в структуре возбудителей отомикозов. На долю грибов рода *Penicillium* приходится около 10 % [1, 3].

Грибковую флору, согласно результатам авторов, высевали в 17,4 % случаев (таблица 5). Она была представлена родами *Candida* (10,1 %) и

Aspergillus (7,2 %). А. niger доминировал среди плесневых грибов в монокультуре и в ассоциациях -4.0 % и 2,4 % соответственно. В исследовании *C. parapsilosis* — преобладающий вид среди рода *Candida*, для него характерна высеваемость только в ассоциациях (таблица 5).

Таблица 4 — Видовое разнообразие и частота встречаемости представителей семейства *Enterobacteriaceae* в отделяемом наружного слухового прохода в монокультуре и в составе микстовой флоры

	Частота встречаемости			
Представитель	в монок	ультуре	в ассоциациях	
	n	%	n	%
Enterobacter aerogenes	0	0	2	1,2
Klebsiella aerogenes	0	0	1	0,6
K. pneumoniae	3	4	4	2,4
Morganella morganii	0	0	1	0,6
Proteus mirabilis	1	1,3	3	1,8
Serratia marcescens	0	0	2	1,2

Таблица 5 — Видовое разнообразие и частота встречаемости грибковой флоры в отделяемом наружного слухового прохода в монокультуре и в составе микстовой флоры

	Частота встречаемости			
Представитель	В МО	нокультуре	в ассоциациях	
	n	%	n	%
Aspergillus				
flavus	1	1,3	1	0,6
A. niger	3	4	4	2,4
Candida				
albicans	1	1,3	3	1,8
C. glabrata	1	1,3	0	0
C. parapsilosis	0	0	8	4,8
Scopulariopsis				
brevicaulis	0	0	1	0,6

Согласно литературным данным, воспалительный процесс в наружном слуховом проходе вызывается смешанной микрофлорой [7]. Поэтому необходим дифференцированный подход к интерпретации полученного

микробиологического исследования ушного отделяемого [4]. Коагулазоотрицательные стафилококки (КОС), в частности, *S. epidermidis*, согласно полученным авторами данным, чаще всего выступают в качестве ассоциатов в микст-культуре, считаются представителями постоянной бактериальной флоры, присутствующей на коже наружного слухового прохода [6].

Другими наиболее распространенными ассоциациями микроорганизмов в наружном слуховом проходе, согласно нашим исследованиям, являлись следующие (таблица 6): *Staphylococcus aureus* + KOC, *S. aureus* + HГОБ, *S. aureus* + грибы, *Pseudomonas aeruginosa* + *S. aureus*, грибы + *S. aureus*, грибы + КОС, грибы + НГОБ.

Таблица 6 – Характеристика микстовой микрофлоры, наиболее часто встречающейся в отделяемом наружного слухового прохода

	-
Возбудитель	%
Staphylococcus aureus + KOC	12,3
S. aureus + грамотрицательная флора	6,2
S. aureus + HГОБ	10,8
S. aureus +грибы	12,3
S. epidermidis + KOC	29,2
S. epidermidis + грамотрицательная флора	4,6
S. epidermidis + HГОБ	6,2
S. epidermidis + грибы	6,2
S. capitis + KOC	20
S. capitis + грамотрицательная флора	1,5
S. capitis + HГОБ	4,6
S. capitis + грибы	3,1
Pseudomonas aeruginosa + S. aureus	10,8
Pseudomonas aeruginosa + KOC	3,1
Pseudomonas aeruginosa +	2.1
грамотрицательная флора	3,1
Pseudomonas aeruginosa + НГОБ	0
Pseudomonas aeruginosa + грибы	0
K. pneumoniae + S. aureus	4,6
K. pneumoniae + KOC	1,5
<i>К. pneumoniae</i> + грамотрицательная	0
флора	Ü
<i>K. pneumoniae</i> + НГОБ	3,1
<i>K. pneumoniae</i> + грибы	0
Грибы + КОС	13,8
Грибы + грамотрицательная флора	0
Грибы + НГОБ	6,2
Грибы + грибы	1,5

В исследованиях авторов не обнаруживали ассоциации *Pseudomonas aeruginosa* с другими микроорганизмами группы неферментирующих бактерий, грибами. Не встречались ассоциации грамотрицательной флоры семейства *Enterobacteriaceae* с грибами.

Итоговые данные по частоте встречаемости основных возбудителей [2, 5] наружных отитов (по видовой структуре) оказались следующими. Наиболее часто выделяли: *P. aeruginosa* (16,7 %), *S. aureus* (29,7 %), *K. pneumoniae* (5,1 %), *P. mirabilis* (2,9 %), *Turicella otitidis* (3,6 %). Стрептококки высевали в единичных случаях (таблица 7). Коагулазоотрицательные стафилококки встречали в 66,7 % случаев, коринеформные бактерии – в 6,5 % случаев.

Таблица 7 — Частота встречаемости выделенных микроорганизмов (итоговая) в отделяемом наружного слухового прохода

Представитель	Частота встречаемости, %
Enterobacteriaceae	13
K. pneumoniae	5,1
Proteus mirabilis	2,9
НГОБ	22,5
P. aeruginosa	16,7
S. aureus	29,7
Грибы	17,4
p. Candida	10,1
p. Aspergillus	7,2
Turicella otitidis	3.6
Streptococcus pneumoniae	0.7
S. pyogenes	1.4
Enterococcus faecalis	2.2
Corynebacterium sp	6,5
KOC	66,7

Результаты изучения чувствительности к антимикробным препаратам представлены в таблицах 8–9. Полученные авторами данные показывают, что выделенные штаммы микроорганизмов группы НГОБ, семейства *Enterobacteriaceae* сохраняют достаточно высокую чувствительность к таким группам антибиотиков, как аминогликозиды, фторхинолоны, цефалоспорины, карбапенемы.

Таблица 8 – Антибиотикочувствительность выделенных штаммов группы НГОБ
и семейства Enterobacteriaceae в отделяемом наружного слухового прохода

Антибиотик	Представитель / группа микроорганизмов		
	НГОБ	P. aeruginosa	Enterobacteriaceae
Амикацин	89,5	93,3	94,7
Гентамицин	89,5	93,3	50
Амоксиклав –			
клавулановая	_	_	42,9
кислота			
Цефтазидим	85,3	84,4	73,9
Цефепим	90,6	90	72,7
Ципрофлоксацин	82,4	83,3	77,3
Меропенем	87,5	90,5	85,7
Имипенем	85,7	82,1	_

Оценка антибиотикочувствительности штаммов золотистого стафилококка показала, что наименьшая активность проявляется к таким препаратам, как клиндамицин (79,7 %) и эритромицин (73,6 %) (таблица 9). В исследованиях авторов выделяли резистентные к цефокситину штаммы, их частота составила 5,1 % от всех штаммов золотистого стафилококка.

Таблица 9 – Антибиотикочувствительность выделенных штаммов *S. aureus* в отделяемом наружного слухового прохода

S. aureus	% чувствительных штаммов
Левофлоксацин	95,7
Цефокситин	94,9
Ванкомицин	100
Линезолид	100
Норфлоксацин	97,3
Клиндамицин	79,7
Моксифлоксацин	100
Оксациллин	91,3
Эритромицин	73,6
Гентамицин	95,7

Анализ чувствительности к антимикотическим препаратам в отношении грибов рода *Candida* показал, что выделенные из наружного слухового прохода штаммы сохраняют высокую чувствительность ко всем тестируемым препаратам (таблица 10).

Таблица 10 – Данные по чувствительности к антимикотическим препаратам

Грибы рода <i>Candida</i>	Чувствительные штаммы, %
Флуконазол	100
Флуцитозин	100
Каспофунгин	100
Микафунгин	100
Вориконазол	100
Итраконазол	100
Амфотерицин В	100

выводы

Показано преобладание бактериальной флоры в микст-флоре.

Подтверждена высокая высеваемость таких значимых в развитии патологии среднего уха возбудителей, как *P. aeruginosa* и *S. aureus*.

Среди условно-патогенной флоры преобладали коагулазоотрицательные стафилококки. *S. epidermidis* встречается часто в монокультуре и в ассоциациях.

Грибы заметно чаще высевают в микст-культуре, чем в монокультуре. В исследованиях авторов среди грибов рода *Candida* превалирующим был вид *C. parapsilosis*.

Этиотропная терапия предполагает использование антибиотиков групп цефалоспоринов, фторхинолонов, аминогликозидов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Корешкова К. М.* Отомикоз: клиника, диагностика и лечение. Обзор литературы / *К. М. Корешкова, З. Р. Хисматуллина, Т. Р. Абдурашитов* // Проблемы медицинской микологии. 2020. Т. 22, № 3. С. 9–14.
- 2. Хронический средний отит: клинические рекомендации. М.: Национальная медицинская ассоциация отоларингологов, 2021. 60 с.
- 3. Роль микробиоты при хронической воспалительной патологии ЛОР-органов / А. И. Крюков, Н. Л. Кунельская, Г. Б. Щедрин и др. // Consilium medicum. -2017 № 11.1. C. 52–56.
- 4. *Гусева А. Л.* Этиологические и патогенетические аспекты хронического гнойного среднего отита: автореф. дисс....канд. мед. наук / *А. Л. Гусева*. М., 2007. 27 с.
- 5. Вирусо-микробные ассоциации при хроническом гнойном среднем отите / H. H. Белоглазова, J. U. Васильева, J. E. Брагина u dp. // Медицинский вестник юга России. -2014. N $_2$ 2. C. 37-40.
- 6. Микрофлора наружного слухового прохода у больных бактериальным наружным диффузным отитом / О. М. Кустов, С. А. Артюшкин, П. В. Начаров и др. // Российская оториноларингология. -2012. -№ 3. C.66–70.
- 7. Микрофлора слухового прохода при наружных отитах / С. Б. Мосихин, Л. И. Решль, А. В. Безбряков и др. // Практическая медицина. 2016. № 2 (94).